skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yong, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solid-state electrolytes (SSEs) are challenged by complex interfacial chemistry and poor ion transport through the interfaces they form with battery electrodes. Here, we investigate a class of SSE composed of micrometer-sized lithium oxide (Li2O) particles dispersed in a polymerizable 1,3-dioxolane (DOL) liquid. Ring-opening polymerization (ROP) of the DOL by Lewis acid salts inside a battery cell produces polymer-inorganic hybrid electrolytes with gradient properties on both the particle and battery cell length scales. These electrolytes sustain stable charge-discharge behavior in Li||NCM811 and anode-free Cu||NCM811 electrochemical cells. On the particle length scale, Li2O retards ROP, facilitating efficient ion transport in a fluid-like region near the particle surface. On battery cell length scales, gravity-assisted settling creates physical and electrochemical gradients in the hybrid electrolytes. By means of electrochemical and spectroscopic analyses, we find that Li2O particles participate in a reversible redox reaction that increases the effective CE in anode-free cells to values approaching 100%, enhancing battery cycle life. 
    more » « less
  2. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How does the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less
  3. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM-related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering-related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How do the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less